
UCRL-CONF-202728

A Short Survey of Document
Structure Similarity Algorithms

D. Buttler

March 5, 2004

The 5th International Conference on Internet Computing
Las Vegas, NV, United States
June 21, 2004 through June 24, 2004

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

A Short Survey of Document Structure Similarity
Algorithms

David Buttler
Lawrence Livermore National Laboratory

Livermore, CA 94550
Email: buttler1@llnl.gov

Abstract— This paper provides a brief survey of document
structural similarity algorithms, including the optimal Tree
Edit Distance algorithm and various approximation algorithms.
The approximation algorithms include the simple weighted tag
similarity algorithm, Fourier transforms of the structure, and a
new application of the shingle technique to structural similarity.
We show three surprising results. First, the Fourier transform
technique proves to be the least accurate of any of approximation
algorithms, while also being slowest. Second, optimal Tree Edit
Distance algorithms may not be the best technique for clustering
pages from different sites. Third, the simplest approximation to
structure may be the most effective and efficient mechanism for
many applications.

I. INTRODUCTION

With the large number of documents on the Web, there is
an increasing need to be able to automatically process those
documents for information extraction, similarity clustering,
and search applications. The majority of work in this area
has focused on document content. However, as the Web
continues to grow and evolve, more and more information
is being placed in structurally rich documents, from HTML
to XML. This structural information is an important clue as
to the meaning of documents. Identifying documents that are
structurally ”similar”, or structurally ”contained” in each other,
is an important mechanism to related similar documents that
may have sufficiently different content as to make text-based
similarity mechanisms nonfunctional.

There are several applications where the structure of the
document is critical. Current information extraction algorithms
either implicitly or explicitly depend on the structural elements
of documents. Structural information can assist in sorting the
vast number of pages available from many sites into sets
that are roughly comparable. This allows software to separate
out the set of documents where information extraction will
produce correct results from those documents where the results
will not produce useful information.

Structural similarity has been an important topic, and there
are algorithms that compute the minimum cost edit distance
between any two document structures. However, since these
algorithms are expensive, typically requiring O(n2) or more
time to compute the distance, there are opportunities to create
algorithms that are faster, but provide slightly less accuracy in
computing the distance.

In this paper we present an overview of the current ap-
proximation algorithms used to detect structural similarity

in Section II. Then we describe a new approximation for
structural similarity based on the shingles technique in Sec-
tion III. Section IV reports on the speed and accuracy of the
approximation algorithms with respect to optimal edit distance
algorithms. We conclude with a summary of the different
algorithm characteristics in Section V.

II. STATE OF THE ART

The study of Structural similarity in tree-based documents
has a long history. Early efforts in tree-based change detection
come from [1], [2]. More recent results on tree to tree changes
focus on creating a minimal edit scripts to convert one tree into
another done by Shasha [3], [4], [5] and Chawathe [6], [7].
There have been significant efforts to adapt structure-based
similarity computation to specific semi-structured formats,
including NiagraCQ [8], Xdiff [9], and Xyleme [10], [11]
for XML documents, as well as AIDE [12], [13] and the
ChangeDetectorTM [14] system for HTML documents.

Previous work on HTML document similarity has generally
focused on content similarity, as with page shingles [15].
Current structural similarity has focused on XML schema
similarity. DTD similarity [16] focuses on pair-wise similarity
between documents with unknown, but similar, DTD’s. This
requires O(n2) for each document comparison. Other work
has transformed the problem of structural similarity between
documents into time-series similarity solved by a Fourier
Transform [17], implemented using a Fast Fourier Transform
to produce O(n × lgn) comparisons.

In this paper we introduce a measure of structural similarity
applies the shingle technique to the structure of a document.
This requires O(k) to create the representation of a single
document (where k is the number of nodes), and provides
constant time comparison of two documents. The savings in
computation comes at a price of a trade-off in accuracy, which
can be arbitrarily reduced to tune the technique for different
requirements. Section IV shows how this technique compares
to other approximation algorithms over different data sets.

A. Similarity Algorithms

Here we give an overview of the different types of algo-
rithms that have been used to determine document similarity.
The different metrics described are tree edit distance similarity,
tag similarity, Fourier transforms, and path similarity. The

motivation and algorithms for the shingle technique are given
in Section III.

Tree Edit Distance (TED) Similarity. Several authors have
provided algorithms for computing the optimal edit distance
between two trees. This paper follows the dynamic program-
ming implementation described by Nierman and Jagadish [16].
In general, edit distance measures the minimum number of
node insertions, deletions, and updates required to convert one
tree into another. This can be converted into a similarity metric
by normalizing the number of edit operations with the number
of nodes in the tree representing the larger document. Let Ni

be the set of nodes in the tree representation of document Di.
Then,

TED(Di, Dj) =
editDistance(Di, Dj)

max(|Ni|, |Nj |)

Tag Similarity. Tag similarity is perhaps the simplest metric
for structural similarity, as it only measures how closely the
set of tags match between two pages. In XML documents, tags
are one component of schema; pages that use a similar set of
tags will likely have a similar schema. The tag sets of the two
documents can be compared to measure their overlap. Let Ti

be the set of tags contained in page Di, and Tj be the set of
tags contained in page Dj . Simple tag similarity of two pages
is the intersection of the set of tags from Ti and Tj over the
union.

However, this is not satisfactory for several reasons. One
critical problem is that pages conforming to the same schema,
such as HTML, have only a limited number of different tags;
one page may contain a large number of a particular tag, while
the comparison page may contain relatively few occurrences
of the tag. To compensate for tag frequency, we can introduce
a weighted similarity measure. Let tik be a member of Ti, and
wik be the number of times tag tik appears in Di. Also, let
tjk be the corresponding tag in Tj , and vjk be the number
of times tag tjk appears in Dj . If there are n unique tags
that occur in pages Di and Dj , then Weighted Tag Similarity
(WTS)

WTS(Di, Dj) =

∑n
k=1 2 · min(wik, vjk)∑n

k=1(wik + vjk)

As this only involves the set of tags in each document, the
accuracy of the structure of the document is independent of
the tags used. As a result, this metric should have very low
accuracy in environments, like HTML documents, when the
tag set is limited, but the structure varies widely. It is likely
to be more accurate in repositories of documents that follow
a small set of schemas, where the schema limits the variation
in structure of documents.

Fourier Transform Similarity Metric. Flesca et al. intro-
duced the Fourier transform technique as a mechanism to
compute similarity between documents [17]. The basic idea is
to strip all the information from a document except for its start

and end tags, leaving a skeleton that represents the structure.
The structure is then converted into a sequence of numbers.
The number sequence is then viewed as a time series, and a
Fourier transform is applied to convert the data into a set of
frequencies. Finally, the distance between two documents is
computed by taking the difference of the magnitudes of the
two signals.

There are several key components of the algorithm that have
a large impact on the results. As originally stated, the encoding
of a documents structure uses a unique (sequential) positive
integer for each start tag in the document, and the negative of
the number for corresponding end tags. Attributes are treated
as tags. Note that this implies that to compare two documents,
the tag number mapping must be the same for each document.
Flesca et al. chose a multilevel encoding of a document d as
a sequence [S0, S1, ..., Sn], where

Si = γ(ti) × expF (ti) +
∑

tj∈nestd(ti)

γ(tj) × expF (tj)

where γ(ti) is the integer corresponding to the ith tag,
expF (ti) = Bmaxdepth(D)−lti is an exponentiation factor
determining the weight of the tag, where B is a fixed base,
maxdepth(D) is the maximum depth of the documents being
compared, lti

is the depth of the ith tag, and nestd(ti) is the
set of ancestors of ti.

The final distance metric between two documents d1 and
d2 using the Fourier transform is defined as

dist(d1, d2) = (

M/2∑

k=1

(|[FFT (h1)](k)| − |[FFT (h2)](k)|)2)
1

2

where FFT is the interpolation of the Fast Fourier Transform
w.r.t. the frequencies appearing in both h1 and h2, h1 is the
signal corresponding to d1, and M is the total number of points
appearing in the interpolation.

There are some difficulties with this approach. First, the
FFT requires the number of points to be a power of 2. A
DFT implementation uses exactly the points in the time series
representation of the document, implying that the accuracy of
the DFT and FFT approximation algorithms will be different.
For our comparisons, we demonstrate only the FFT as the DFT
is O(n2), it takes longer than the TED algorithm in practice,
and the accuracy of the DFT approximation algorithm is lower
than the FFT.

Second, the requirement to harmonize the tag mapping and
precompute the maximum depth of the compared documents
precludes the ability to precalculate any part of the algorithm
based on a single document to reduce pair-wise comparison
time.

Third, Fourier transforms typically operate on a repeating,
infinite time series. Documents, as we encounter them, are
finite. To apply the transforms, one must extend the time series
extracted from document to infinitely repeat. It is not clear
what this means in terms of the original document, and the
effect this has on the comparison.

III. PATH SHINGLE

The problem with using an optimal TED algorithm is that
it is extremely expensive on large documents. The approx-
imation algorithms presented so far are either unintuitive
(Fourier transforms), or provide only a coarse similarity metric
(weighted tags). We feel that there needs to be a fast approx-
imation algorithm that can be tuned for accuracy depending
on the application.

Shingles were introduced by Broder in [15] as a technique
to compare two text documents for similarity and containment.
The technique reduced the set of words, or tokens, in a docu-
ment into a list of hashes that can be directly compared with
another document using set difference, union, and intersection
to determine similarity or containment.

Further, a subset of the shingles, called a sketch, may be
used to determine document similarity. Intuitively, sketches
are a random sample of the text in a page. The key is that
because the random mapping is constant across all pages, and
the results are sorted, the samples are directly comparable
across different pages. The overlap in page samples indicates
overlap between entire pages.

We show how to adapt this technique, and apply it to the
structure of a document. This allows us to essentially compute
a linear time approximation to the similarity between the
structure of documents. By slightly reducing the accuracy, a
constant time comparison between documents of any size may
be computed.

A. Path Similarity

In order to create a structure encoding suitable for applying
the shingle technique to, we must find a mechanism to create
a list of tokens that represent the structure. Natural choices,
such as a depth-first or breadth-first heap encoding [18] prove
to be inappropriate due to the unsegmented nature of of the
token list used to represent a tree. This means that windows
covering a token list cannot distinguish when one branch
ends, and the next branch begins. Windows that cover such
breaks do not accurately represent any portion of the original
structure. Working to build appropriate segmentation of such
an encoding leads to another natural encoding: paths.

Semi-structured documents (HTML and XML) can be
viewed as a sequence of branches, paths from the root to a leaf.
For our purposes, we consider any partial path, the path from
the root to any node of the Web document, to be a token. More
specifically, it is a list of tag names from the root to the node.
A tree can be encoded as a list of these tokens. For example,
the simplest tree in HTML has a title and body element, and
can be encoded as

/html
/html/head
/html/head/title
/html/head/title/[text]
/html/body
/html/body/[text]

Path similarity measures the similarity of paths between two
different documents. A path is defined as a list of connected
nodes starting at the root and terminating in a leaf node. Path
similarity can be measured in several different ways: binary,
where a path is either equivalent or not; partial, where the
number of comparable nodes in each path are discovered; or
weighted, where the nodes are weighted according to their
distance from the root.

Partial path similarity measures are expensive to compute.
Since there are n! possible mappings between the paths of two
trees, exhaustive algorithms that produce the optimal similarity
score are infeasible. Binary similarity is much cheaper, as
each unique path in one version can be matched with its
equivalent in the second version of the tree using database join
techniques, such as hash joins. Similarity can be computed as
the ratio of the matched paths to the total number of paths in
the two trees.

B. Applying Shingles to Paths

A shingle is a contiguous subsequence of tokens taken from
a document. Resemblance between documents Di and Dj is
defined as

r(Di, Dj) =
S(Di, w) ∩ S(Dj , w)

S(Di, w) ∪ S(Dj , w)

where S(Di, w) is the operator that creates shingles of length
w from document Di. Similarly, containment of document Di

in Dj is defined as

c(Di, Dj) =
S(Di, w) ∩ S(Dj , w)

S(Di, w)

For convenience and faster processing, shingles may be
converted into numbers with a hashing function. This hashing
function should provide a high degree of confidence that
there will be little or no hash collisions where two shingles
map to the same value. Constructing an appropriate hash is
made considerably easier by ensuring that the hash space is
significantly larger than the shingle space. Depending on the
number of tokens in a shingle (or window length), this may
be trivial.

A key technique that reduces the complexity of structural
comparison to O(1) is to only keep a relatively small sketch of
each document. It has been shown [15] that a sampling from
a permutation of the set of shingles, chosen uniformly and at
random, can be used in an unbiased estimator of resemblance
between two documents. One efficient way to achieve this is
by applying a pseudo-random number generation algorithm to
the hashed values, sorting the results, and choosing only the
smallest k of the resulting values.

For applying shingles to the path structure, we define
S(Di, w) as follows: for each node in the tree representation
of Di, compute the path from the root to that node; create a
hash based on the list of tag names in that (partial) path; add
the hash to the current window; slide the window over one
(forget the first hash in the window).

Note that by the definition, the set of shingles may be
either a set or a bag — analogous to the difference between

tag similarity and weighted tag similarity. It follows that
using a set to contain the shingles significantly reduces the
expressive power of a shingle and introduces greater error into
the approximation.

We have measured the accuracy of the path shingle metric
as compared to the partial path metric. The comparisons have
been made over differing window sizes using an infinite k.
The data used for comparisons are typical Web page snapshots
downloaded from my.yahoo.com over a period of two
years. The results show that small window sizes (ranging from
one to four) have no effect on accuracy: two clusters have no
errors, and four clusters only introduces three percent error.
Varying the number of shingles used for comparison did not
have any effect on cluster quality. k values tested ranged from
ten to 1000, and an unlimited number of shingles. All report
the same error to within a tenth of a percent.

IV. EXPERIMENTS

In this section we empirically evaluate the accuracy of the
different approximation algorithms to the tree edit distance
algorithm, and we compare the performance of the different
approximation algorithms.

All experiments were run on a dual 2 GHz Xeon processor,
2.4 kernel Linux workstation. The algorithms were written in
Java, and executed on the Sun 1.4.2 JVM. All algorithms were
implemented using the Page Digest data structure [18], which
has been shown to have significant performance benefits over
standard DOM tree implementations. Performance measure-
ments were taken as an average over ten runs.

Comparisons based on clustering. Clustering is used to
asses the quality of different metrics with respect to the tree
edit distance (TED) baseline. The TED algorithm produces a
provably optimum edit distance between two trees. We assume
that this is the best metric of similarity. Other algorithms are
expected to produce different different distance measurements
that are not directly comparable to an edit distance. However,
if a large set of documents are clustered based on a metric,
clusters produced by different metrics are directly comparable
given that the same clustering algorithm is used. In other
words, if two documents are determined to be similar using
the TED metric, other metrics should also consider those two
documents to be similar, and conversely.

We can then categorize as errors documents that are placed
in a single cluster by an approximation metric, but are placed
in different clusters by the TED metric. This error measure
has some drawbacks. For example, if a set of documents is
divided into two clusters, any metric will have a maximum
error rate of strictly less than 50%. In general, as the number
of clusters, n, increases, this maximum error rate is strictly
less than 1 − 1

n .
We use two data sets for clustering. First, is a synthetically

generated set of 500 XML documents. The set models a
book repository, each document listing a single book with
its associated author(s), publisher, and publication date. The

only structural difference between documents in this set is the
number of authors that a book has.

Each metric is used to measure the distance between
any two documents. The documents are clustered on these
distances using k-means clustering. The clusters from each
approximation metric is then compared to the clusters from
the TED metric, and an error estimation is calculated. The
results are shown in Table I. We only test up to six clusters

TABLE I
CLUSTER ERROR RATE OVER BOOK DATA

Similarity Error Rate
Metric 6 clusters 4 clusters 2 clusters

Weighted Tag 6% 5% 2%
FFT 60% 46% 47%
Path 0 % 0% 2%

Path Shingles 6% 5% 2%

as there are six naturally occurring clusters in this data set,
corresponding to the number of authors in a book. The low
error rate for the weighted tag metric is to be expected, as
the only difference in the structure of these data objects is the
number of times the author tag appears.

The second data set is drawn from a set of snapshots taken
of the following Web sites: cnn.com, corona.bc.ca,
news.gnome.org, 10-10phonerates.com, and
my.yahoo.com. The snapshots were taken over a period
of two years, between 2001 and 2003, at approximately once
per day. Redundant snapshots (as determined by an MD5
signature) were removed, and twenty pages were sampled
from each sites snapshot set. The same clustering technique
is applied to these documents, only this time we have a
predefined cluster (by Web site), and are able to compare
each of the algorithms to the predefined cluster. The results
are shown in Table II.

TABLE II
CLUSTER ERROR RATE OVER WEB DATA

Similarity Error Rate
Metric 6 clusters

Weighted Tag 0%
Path 28%

Path Shingles 34%
TED 38%
FFT 45%

This error rate seems exceptionally high, especially for
the TED algorithm that we have been using for the baseline
comparison for the other tests. We speculate that this error rate
is caused due to a relatively small vocabulary of HTML struc-
tures for displaying content to users. The Path and Path Shingle
metrics, while they perform better than TED, also perform
worse than would otherwise expected. This may be because
they use partial paths to describe the structure of a tree. Deep
trees may exhibit a lot of similar structure in the top portions,
causing the similarity of two trees from different sites to be

skewed toward similarity with each other. The FFT metrics
poor performance does not afford itself to simple explanations.
It could be argued that web pages display extremely similar
signals, based on the identical first couple of tags (html,
head, and body), and similar constructions at the leaf level
(lists of tags and text). However, the transformation makes it
difficult to determine exactly what features of the Web pages
cause them to be seen as so similar.

For a final comparison, we examined snapshots from a
single site from the table above. This would be useful in,
for example, monitoring a page for changes over time. We
chose the my.yahoo.com site as the content changes on
a regular basis, but the structure only slowly changes over
time (for example, when a new graphic is added for particular
holidays). Here again we compared the clusters created using
the approximation metrics to the TED metric.

TABLE III
CLUSTER ERROR RATE OVER YAHOO! DATA

Similarity Error Rate
Metric 6 clusters 4 clusters 2 clusters

FFT 33% 31% 29%
Path 59% 46% 1%

Weighted Tag 60% 50% 1%
Path Shingles 61% 47% 1%

Here we observe that while most of the approximation
algorithms, with the exception of the FFT algorithm, had a
very low error rate at a small cluster size, but the error rate
jumped significantly with a larger number of clusters. It is
constructive to look at a matrix describing how the mapping
varies from the TED metric clustering with the FFT clustering
and the Path / Path Single clustering. Table IV describes how
the FFT clusters differ from the TED clusters, while Table V
describes how the Path clusters differ from the TED clusters.

TABLE IV
CLUSTER COMPARISON BETWEEN FFT AND TED METRICS; 6 CLUSTERS

Cluster # TED
FFT 1 2 3 4 5 6

1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 1 0 0 0 0 0
4 1 0 0 0 0 0
5 92 31 1 8 0 0
6 1 0 0 0 0 0

From these two matrices, we deduce that the FFT metric
tends to cluster all of the data points into a single sample,
and thus not providing sufficient discriminating power for
very similar Web pages. The Path metric (the Path Shingle
and Weighted Tag metrics are essentially the same), on the
other hand is more discriminating than the TED metric, and
separates pages into more refined groups than the TED. While
these experiments record this behavouir as an error, it may

TABLE V
CLUSTER COMPARISON BETWEEN PATH AND TED METRICS; 6 CLUSTERS

Cluster # TED
Path 1 2 3 4 5 6

1 26 1 0 0 0 0
2 18 0 0 0 0 0
3 12 0 0 0 0 0
4 18 0 0 0 0 0
5 0 30 1 8 0 0
6 23 0 0 0 0 0

have an important function in discriminating trees that are
perceivably different, but within equivalent edit distances.

The most startling observation is that the weighted tag
similarity metric, initially included as a straw man, performs at
about the same level of accuracy over the web pages tested as
much more sophisticated techniques. This may be attributable
to that fact that most of the experiments were conducted over
relatively homogeneous pages that are from a single site (as
in the book data set or the Yahoo! data set), or that the
non-homogeneous sites used a different subset of available
HTML tags in order to perform their comparisons. The other
observation is that the Fourier transform technique performs
poorly over fairly simple data sets. This leads us to conclude
that while the idea of converting structure into a ’simpler’
format for comparison, it is not an appropriate technique for
comparing document structure, either analytically or experi-
mentally.

A. Performance Comparisons

The main reason to choose an approximation algorithm is
to increase speed to an acceptable level in situations where
the optimal algorithm is too slow. Document clustering for
data extraction, or search and retrieval methods, provides
an excellent example for structural similarity. The relatively
small dataset used in accuracy estimation demonstrates the
effectiveness of approximate similarity computation. Figure 1
shows the relative cost for the different algorithms over a
logarithmically increasing number of book documents.

The clustering time was computed on documents of a
trivial size, less than a kilobyte. To better understand just the
cost of computing the difference between two documents, we
compared the cost of each metric over the TPC-H benchmark
data. This data was randomly generated by the Toxgene [19],
XML document generator. The parameters for the generator
were changed so as to produce documents containing 1%,
5%, 10%, 15%, 20%, and 25% of the original data set. The
generator was run twice to produce two different documents
at each fraction. The results are shown in Figure 2.

Here we see that the TED algorithm is several orders of
magnitude slower than any of the approximation algorithms.
The FFT algorithm also shows that, even though it has traded a
significant amount of accuracy for speed, it is still an order of
magnitude slower than the Weighted Tag, or the Path Shingle
metrics, both of which are significantly more accurate.

100 101 102 103
100

101

102

103

104

105

106

E
xe

cu
tio

n
Ti

m
e

(m
s)

Number of documents

Tree Edit Distance
FFT
Path Metric
Path Shingle
Weighted Tag

Fig. 1. Cost of clustering book documents using k-means

101 102 103 104 105
100

101

102

103

104

105

106

E
xe

cu
tio

n
Ti

m
e

(m
s)

File Size (KB)

Tree Edit Distance
FFT
Path Metric
Path Shingle
Weighted Tag

Fig. 2. Pair difference cost of similarity metrics over TPC-H data

Large File Support. The optimizations that trade time for
memory size work very well for small to moderate sized files,
but the Tree Edit Distance algorithm dramatically slows on
large files that cause the data structures to exceed physical
memory. After physical memory is exhausted, the machine
is forced to use swap memory—which is several orders of
magnitude slower.

Shingles have the advantage of creating constant-sized
fingerprints of large files, eliminating the need to maintain
complex data structures in memory when calculating the
similarity.

Shingles may also be partially tuned, even after the original
fingerprint is taken. Given a set of window hashes, only the
top k need to be compared. The number of hashes compared
can be adjusted to trade accuracy for speed and memory space.
This also allows for more fingerprints to be held in memory
at one time for lower accuracy comparisons.

V. SUMMARY

We have presented several algorithms for measuring docu-
ment structure similarity, comparing their accuracy and per-
formance. We have several interesting observations.

First, we have provided an experimental critique of the
Fourier transform method described in [17]. While a Fourier
transformation provides a faster approach to similarity mea-
surements than the optimal tree edit distance algorithm, the
approach does not offer an accurate measure of similarity in
several types of situations. In addition, the performance of this
technique is often poorer than other, more intuitive approaches
to approximate similarity.

Second, for many applications of structural similarity, the
simplest technique of counting tags provides acceptable ac-
curacy with the best performance. We initially set up the
Weighted Tag similarity metric as a straw man to provide
the fastest reasonable approximation to structural similarity.
However, it turned out to perform as well or better than any
of the approximation algorithms. While it does not provide
certain structural features that the either the tree edit distance
metric (matching of identical subtrees) or the path shingle
metric (substructure containment) do, for applications which
do not require such features, this algorithm is both fast and
reasonably discerning.

Finally, we presented a new similarity metric based on
the paths present in a documents structure. We optimized
this metric by applying the shingle technique to create con-
stant sized representations of arbitrary documents, allowing
clustering techniques to be applied to much larger sets of
documents than is possible with other structural similarity
measures. In addition this metric presents the ability to search
large document sets for substructures, and the capability to do
some type of structural mining in sets of tree-based documents.

In the near future we plan to release the source code for each
of these algorithms, data, and the testing framework as open
source. We hope this will spur the development of superior
similarity metrics, and promote these techniques.

ACKNOWLEDGMENT

The author would like to thank Chuck Baldwin and Ghaleb
Abdulla for stimulating conversations on these topics. The
author would also like to thank Daniel Rocco for setting up the
first experimental framework, and for assistance in developing
the Page Digest data structure that was used as the basis for
many of these algorithms.

This work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-
ENG-48. UCRL-CONF-202728.

REFERENCES

[1] K. C. Tai, “The tree-to-tree correction problem,” Journal of the ACM,
vol. 26, no. 3, 1979.

[2] S. Y. Lu, “A tree-to-tree distance and its application to cluster analysis,”
IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1, no. 2, 1979.

[3] D. Shasha and K. Zhang, “Fast algorithms for the unit cost editing
distance between trees,” Journal of Algorithms, no. 11, 1990.

[4] K. Zhang, D. Shasha, and J. T.-L. Wang, “Approximate tree
matching in the presence of variable length don’t cares,” J.
Algorithms, vol. 16, no. 1, pp. 33–66, 1994. [Online]. Available:
citeseer.nj.nec.com/zhang93approximate.html

[5] D. Shasha and K. Zhang, “Approximate tree pattern matching,” in
Pattern Matching Algorithms. Oxford University Press, 1997, pp.
341–371. [Online]. Available: citeseer.nj.nec.com/95609.html

[6] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom, “Change
detection in hierarchically structured information,” in Proceedings of
ACM SIGMOD, 1996.

[7] S. S. Chawathe and H. Garcia-Molina, “Meaningful change
detection in structured data,” in Proceedings of the 1997
ACM SIGMOD, 1997, pp. 26–37. [Online]. Available:
citeseer.nj.nec.com/article/chawathe97meaningful.html

[8] J. Chen, D. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A scalable
continuous query system for Internet databases,” in Proceedings of the
2000 ACM SIGMOD, 2000.

[9] Y. Wang, D. DeWitt, and J.-Y. Cai, “X-Diff: An effective change
detection algorithm for XML documents,” International Conference on
Data Engineering, 2003.

[10] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet, “Change-
centric management of versions in an XML warehouse,” in
The VLDB Journal, 2001, pp. 581–590. [Online]. Available:
citeseer.nj.nec.com/marian00changecentric.html

[11] G. Cobena, S. Abiteboul, and A. Marian, “Detecting changes in XML
documents,” in International Conference on Data Engineering, 2002,
pp. 41 –52.

[12] F. Douglis, T. Ball, Y.-F. Chen, and E. Koutsofios, “The AT&T Internet
difference engine: Tracking and viewing changes on the Web,” in World
Wide Web, vol. 1, January 1998, pp. 27–44.

[13] Y.-F. Chen, F. Douglis, H. Huan, and K.-P. Vo, “TopBlend: An efficient
implementation of HtmlDiff in Java,” in Proceedings of the WebNet2000
Conference, San Antonio, TX, November 2000.

[14] V. Boyapati, K. Chevrier, A. Finkel, N. Glance, T. Pierce, R. Stokton,
and C. Whitmer, “ChangeDetector(TM): A site-level monitoring tool for
the WWW,” in WWW2002, May 2002.

[15] A. Z. Broder, “On the Resemblance and Containment of Documents,”
in Proceedings of Compression and Complexity of SEQUENCES 1997,
1997.

[16] A. Nierman and H. Jagadish, “Evaluating structural similarity in XML
documents,” Fifth International Workshop on the Web and Databases,
2002.

[17] S. Flesca, G. Manco, E. Masciari, L. Pontieri, and A. Pugliese, “Detect-
ing structural similarities between XML documents,” Fifth International
Workshop on the Web and Databases, 2002.

[18] D. Rocco, D. Buttler, and L. Liu, “Page Digest for large-scale Web ser-
vices,” in Proceedings of the IEEE Conference on Electronic Commerce,
June 2003.

[19] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A.
Lyons, “Toxgene: An extensible template-based data generator
for XML,” in SIGMOD Conference, 2002. [Online]. Available:
citeseer.nj.nec.com/525958.html

